Saturday, September 15, 2012


                             FUTURE OF NANO COMPUTING

               Now-a-days nano technology is one of the fastest growing field in sciene and technology.Nanotechnology is employed in any field of science and technology.It is widely used in automobiles,medicine,chemistry,physics&other branches of science and technology.But now-a-days scientists are employing the nanotechnology in the field of computers which in future gives rise to NANOCOMPUTING
                 In the past twenty years, there has been a dramatic increase in the processing speed of computers, network capacity and the speed of the internet. These advances have paved the way for the revolution of fields such as quantum physics, artificial intelligence and nanotechnology. These advances will have a profound effect on the way we live and work, the virtual reality we see in movies like the Matrix, may actually come true in the next decade



NANOCOMPUTERS:
Scientists are trying to use nanotechnology to make very tiny chips, electrical conductors and logic gates. Using nanotechnology, chips can be built up one atom at a time and hence there would be no wastage of space, enabling much smaller devices to be built. Using this technology, logic gates will be composed of just a few atoms and electrical conductors (called nanowires) will be merely an atom thick and a data bit will be represented by the presence or absence of an electron.
A component of nanotechnology, nanocomputing will give rise to four types of nanocomputers:
• Electronic nanocomputers
• Chemical and Biochemical nanocomputers
• Mechanical nanocomputers
• Quantum nanocomputers
Electronic nanocomputers
Eletronic nanocomputers are created through microscopic circuits using nanolithography. [
Nanocomputers]

Chemical and Biochemical nanocomputers:
The interaction between different chemicals and their structures is used to store and process information in chemical nanocomputers. In order to create a chemical nanocomputer, engineers need to be able to control individual atoms and molecules so that these atoms and molecules can be made to perform controllable calculations and data storage tasks.

Mechanical nanocomputers:
A mechanical nanocomputer uses tiny mobile components called nanogears to encode information. Some scientists predict that such mechanical nanocomputers will be used to control nanorobots.
Quantum nanocomputers:
A quantum nanocomputer store data in the form of atomic quantum states or spin. Single-electron memory (SEM) and quantum dots are examples of this type of technology.

Humanizing Nanocomputers:
Apart from this, scientists aim to use nanotechnology to create nanorobotsthat will serve as antibodies that can be programmed. This will help to protect humans against pathogenic bacteria and viruses that keep mutating rendering many remedies ineffective against new strains. Nanorobots would overcome this problem by reprogramming selectively to destroy the new pathogens. Nanorobots are predicted to be part of the future of human medicine.


• SPRAY-ON NANO COMPUTERS:
Consider that research is being done at the Ediburgh University to create "spray-on computers the size of a grain of sand” that will transform information technology. The research team aims to achieve this goal within four years.
When these nanocomputers are sprayed on to the chests of coronary patients, the tiny cells record a patient’s health and transmit information back to a hospital computer. This would enable doctors to monitor heart patients who are living at home.
QUANTUM COMPUTERS:
A quantum computer uses quantum mechanical phenomena, such as entanglement and superposition to process data. Quantum computation aims to use the quantum properties of particles to represent and structure data. Quantum mechanics is used to understand how to perform operations with this data. The quantum mechanical properties of atoms or nuclei allow these particles to work together as quantum bits, or qubits. These qubits work together to form the computer's processor and memory. Qubits can interact with each other while being isolated from the external environment and this enables them to perform certain calculations much faster than conventional computers.
By computing many different numbers simultaneously and then interfering the results to get a single answer, a quantum computer can perform a large number of operations in parallel and ends up being much more powerful than a digital computer of the same size.
"In the tiny spaces inside atoms, the ordinary rules of reality ... no longer hold. Defying all common sense, a single particle can be in two places at the same time. And so, while a switch in a conventional computer can be either on or off, representing 1 or 0, a quantum switch can paradoxically be in both states at the same time, saying 1 and 0.... Therein lies the source of the power." Whereas three ordinary switches could store any one of eight patterns, three quantum switches can hold all eight at once, taking "a shortcut through time."
Quantum computers could prove to be useful for running simulations of quantum mechanics. This would benefit the fields of physics, chemistry, materials science, nanotechnology, biology and medicine because currently, advancement in these fields is limited by the slow speed of quantum mechanical simulations.
Quantum computing is ideal for tasks such as cryptography, modeling and indexing very large databases. Many government and military funding agencies are supporting quantum computing research to develop quantum computers for civilian and national security purposes, such as cryptanalysis.